
 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

1

An Efficient Accountability for Data Sharing In The Cloud

Distribution System

Mohammed Younus Shariff*1, Akheel Mohammed*2, Dr. Vasumathi*3

Abstract

 Cloud computing is the use of computing of sources that are delivered as a service over a network. It enables highly scalable services to be

easily consumed over the internet on an as needed basis. A major characteristic of the cloud services is that user’s data are usually processed

remotely in unknown machines that users do not operate. While enjoying the convenience brought by this new emerging technology, user’s fear

of losing control of their own data can become a significant barrier to the wide adoption of cloud services. It can become a substantial roadblock

to the wide adoption of cloud services. To adders this problem we propose a highly decentralization answerability frame work to keep track of the

actual usage of the users data in the cloud. The cloud information accountability frame work proposed in this work conducts automated logging

and distributed auditing of relevant access performed by any entity, carried out at any point of time at any cloud service provider. We propose an

object centered approach that enables enclosing our logging mechanism together with user’s data and policies. The proposed methodology will

also take concern of the JAR file by converting the JAR into obfuscated code which will adds an additional layer of security to the infrastructure.

Apart from that we are going to increase the security of users data by provable data possession for integrity verification.

Keywords: Cloud Computing, Data Sharing, Information accountability framework, Provable data possession.

1. Introduction

The cloud information accordingly framework proposed in this

work conducts automated logging and distributed auditing of

relevant access performed by any entity, taken out at any point of

time at any cloud service provider. It has two major components

logger and log harmonizer. The JAR file includes a set of simple

access control rules specifying whether and how the cloud services

and possibly other data stakeholders are authorized to access the

content itself. Apart from that we are going to check the integrity

of the JRE on the system on the systems on which the logger

components is initiated. While enjoying the convenience brought

by this new technology users also start worrying about losing

control of their own data. The data processed on cloud are often

outsourced leading to a number of issues related to accountability,

including the handling of personally identifiable information. Such

fears are becoming a significant barrier to wide adoption of cloud

services. This integrity checks are carried out by using oblivious

hashing. The proposed methodology will also take concern of the

JAR file by converting the JAR into obfuscated code which will

adds an additional layer of security to the infrastructure. Apart

from that we are going to enlarge the security of users’ data by

provable data possessions for integrity verification. Based on the

configuration settings defined at the time of creation, the JAR will

give usage control associated with logging, or will give only

logging functionally. As for the logging, every time there is an

access to the data, the JAR will automatically produce a log record.

In existing system the cloud computing is the delivery of

computing as a service rather than a product by which shared

resources, software and information are given to computers and

other devices as utility like the electricity grid over a network. In

these days a single server deals with the multiple requests from the

user. Here the server has to operate the both the request from the

user simultaneously, so the processing time will be high. This may

lead to deficit of data and pockets may be delayed and corrupted

and also the data management and services are not trust worthy.

While enjoying the convenience brought by this new technology,

users also start bothering about losing control of their own data.

The data operated on clouds are often outsourced, which lead to a

number of issues related to accountability, including the

management of personally identifiable information. To allay users

concerns it is necessary to provide an effective mechanism for

users to monitor the usage of their data in the cloud. For example

users required to be able to ensure that their data are handled

according to the service level agreements made at the time they

sign on for services, or approaches with a centralized server in

distributed environment are not suitable because of the following

features characterizing cloud environment.

 Disadvantage: Although the cloud computing is vast

developing technology, the database management

system does not have trustworthiness.

We propose a novel automatic and enforceable logging mechanism

in the cloud. To our knowledge, this is the first time a systematic

approach to data accountability through the novel usage of JAR

files is proposed.

This article is an extension of our previous conference paper. We

have made the following new contributions. First we integrated

integrity checks and obvious hashing technique to our system in

order to strengthen the dependability of our system in case of

compromised JRE. We are also updated the log records structure to

provide additional guarantees of integrity and authenticity. We

extend the security analysis to cover more possible attack

scenarios. Then we report the results of new experiments and

provide a thorough evaluation of the system performance.

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

2

2. Related Work

First review related for works addressing the privacy and security

issues in the cloud. Then we briefly discuss works which adopt

similar techniques as our approach but server for different

purposes.

2.1 cloud privacy and security

Their basic idea is that the users private data are sent to the cloud

in an encrypted from and processing is done on the encrypted data.

The output of the processing is deobfuscated by the privacy

manager to reveal the correct result. However the privacy manager

provides only limited features in that it does not guarantee

protection once the data are being disclosed. The authors focus is

very different from ours in that they mainly leverage trust

relationships for accountability along with authentication and

relationships for accountability, along with authentication and

anomaly detection. Researchers have investigated accountability

mostly as a provable property through cryptographic mechanisms,

particularly in the context of electronic commerce. Crispo and

ruffo proposed an interesting approach related to accountability in

case of delegation. Delegation is complementary to our work in

that we do not aim at controlling the information workflow in the

clouds. The best of our knowledge, the only work proposing a

distributed approach to accountability is from lee and colleagues.

The authors have proposed an agent based system specific to grid

computing.

2.2 Related Techniques

Java based techniques for security of our methods are related to

self defending objects. Self defending objects are an extension of

the object oriented programming paradigm, where software objects

that offer sensitive functions or hold sensitive data are responsible

for protecting those functions or data. We provided a java based

approach to prevent privacy leakage from indexing which could be

integrated with the CIA framework proposed in this work since

they build on related architecture. Appel and Felten proposed the

proof carrying authentication framework. The PCA includes a high

order logic language that allows quantification over predicates and

focuses on access control for web services. Another work is by

Mont et al. who access control using identifying based encryption.

We also leverage IBE techniques but in a very different way. We

do not rely on IBE to bind the content with the rules. We use it to

provide strong guarantees for the encrypted content and the log

files, such as protection against chosen plaintext and cipher text

attacks. In this work we do not cover issues of data storage security

which are a complementary aspect of the privacy issues.

3. Proposed system

To overcome the existing problems, we propose a novel method,

namely Cloud Information Accountability framework, based on the

notion of information accountability. Data owner can upload the

data into the cloud server after encrypted the data. Users can

subscribe into the cloud server with certain access polices such as

read, write and copy of the original data. The Loggers and Log

Harmonizer will have a track of the access logs and report to the

data owner. The Cloud Information Accountability framework

proposed in this work conducts automated logging and distributed

auditing of relevant access performed by any entity, carried out at

any point of time at any cloud service provider. It has two major

components Logger and Log harmonizer.

 Advantage: we can share the data in a secured manner.

3.1 Data Flow

At the beginning each user creates a pair of public and private keys

based on Identify Based Encryption. This IBE scheme is a Weil

pairing based IBE scheme which protects us against one of the

most prevalent attacks to our architecture as described. Using the

generated key the user will create a logger component which is a

JAR file to store its data items.

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

3

Fig 1. Overall Architecture.

Modification:

 Automatic reporting of illegal action performance of any use

to the data owner, along with data owner would generate the

random numbers set for the every user. So if the user accessing the

account the user has to give the random number set and that will be

verified by the server. If the verification resultant is positive then

only the user will be allotted to access their account.

4. Implementation

4.1 Evolution of Proposed Algorithm

The algorithm here used is Log Retrieval Algorithm for Push and

Pull modes. The algorithm presents logging and synchronization

steps with the harmonizer in case of pure Log. First the algorithm

checks whether the size of the JAR has exceeded a stipulated size

or the normal time between two consecutive dumps has elapsed.

The size and time threshold for a dump are specified by the data

owner at the time of development of the JAR. The algorithm also

determines whether the data owner has requested a dump of the log

files. If none of these events has happened it proceeds to encrypt

the record and write the error correction information to the

harmonizer. The interaction with the harmonizer begins with a

simple handshake. If no response is received the log file records an

error. The data owner is then altered via emails, if the JAR is

configured to send error notifications. Once the handshake is done,

the interation with the harmonizer proceeds using a TCP/IP

protocol. If either of the aforementioned events has happened, JAR

simply dumps the log files and resets all the variables, to make a

space for a new record. In case of Access Log checks whether the

CSP accessing the log satisfies all the conditions specified in the

policies pertaining to it. If the conditions are fulfilled, access is

granted otherwise, access is declined. Irrespective of the access

control outcome, the attempted access to the data in JAR file will

be logged. Our auditing mechanism has two fundamental

advantages. First it guarantees a high level of availability of the

logs. Second the usage of the harmonizer minimizes the amount of

workload for human users in going through long log files sent by

different copies of JAR files. In this system we are used different

types of modules these are

4.1.1 User or Data Owners

The person or user is going to sea or download the data from the

cloud server. Access the data from the cloud server the user have

to be registered with the cloud server. So that the user have to

register their details like username, password and a set of random

numbers. This is the information that will store in the database for

the future authentication. Data owner is the person who is going to

upload the data in the Cloud Server. In order to upload the data

into the Cloud server, the Data Owner have to be registered in the

Cloud Server. Once the Data Owner registered in cloud server, the

space will be assigned to the Data Owner.

4.1.2 Cloud Server

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

4

Cloud Server is the area where the user going to request the data

and also the data owner will upload their data. When the users send

the request regarding the data they want the request will need first

send to the cloud server and cloud server and the cloud server will

forward your request to the data owner. The cloud server will also

manage the data owner and users information in their Database for

future purpose.

4.1.3 Logger

The logger is maintained by the Cloud Server. Loggers have the

details of the data owner and users who are accessing the cloud

server. So the Logger will be more useful for many purposes. Like

which data owner accessing the cloud server accessed at the

particular time and the IP address from which the data is requested

by user.

4.1.4 Certification Authority

The certificate authority is used to verify the Cloud server is

recognized or not. The cloud server has to be recognized by the

certificate authority. If not recognized the Cloud Server is a

Fraudulent Server. The data owner can check the whether the

recognized or not. Because the data owner is going to upload their

data in the Cloud Server.

4.1.5 Access Privileges

Some Owners will provide read only, some of them will allow read

and download. The Cloud Server will send the dynamic intimation

when the user is accessing the data beyond their limits. This

increases more security while sharing the data in the cloud.

4.1.6 Push and Pull Concept

The data owner may able to know who’re all the accessing their

data at the particular time period. During the registration phase the

data owner will ask by the cloud server whether they’re choosing

the push or pull method. In pull method, the data owner has to send

the request to the cloud server regarding the access details of their

data up to the particular time.

4.1.7 Random Set Generation and Verification

When the user request the data to be downloaded from the Cloud

Server, the user have to enter the random number set. If it is

matched the user is allowed to download the data. Each and every

time the random number set will vary. This ensures security while

downloading the dat.

5. Experiment Results

We first bring out the settings of the test environment and then

present the performance study of our system. Note that we do not

consider the attack on the log harmonizer component, since it is

saved separately in either a secure proxy or at the user end and the

attacker typically cannot access it. As a result we consider that the

attacker cannot extract the decryption keys from the log

harmonizer.

In the experiments first we examine the time taken to create log

file and then measure the overhead in the system. At the time of

the authentication during encryption of a log record and at the time

of the merging of the logs. Further JAR appears as a compressor of

the files that it handles. In particular as proposed multiple files can

be managed by the same logger component. To this extent we

checked whether a single logger component used to managed more

than one file result in storage overhead.

5.1 Log Creation Time

In the first round of experiments, we are concerned in finding put

the time taken to create a log file when there are entities

continuously accessing the data causing continuous logging.

Results are shown in fig2. Specifically the time to develop a 100

Kb file is about 114.5 ms while the time to create a 1 MB file

averages at 731 ms. With this experiment as the baseline one can

figure out the amount of time to be specified between dumps

keeping other variables like space constraints or network traffic in

mind.

Fig .2. Time to merge log files.

5.2 Authentication Time

The performance can be further improved by caching the

certificates. The time of authentication an end user is about the

same when we consider only the actions required by the JAR, viz.

acquiring a SAML certificate and then evaluating it. This is done

to both the OpenSSL and the SAML certificates are handles in a

similar fashions by the JAR. When we consider the users actions it

averages at 1.2 minutes.

5.3 Time Taken to Perform Logging

This set of experiment studies the effect of log file size on the

logging performance. We measured the average time taken to

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

5

allow an access plus the time to write the corresponding log record.

Every access is just a view request and hence the time for

executing the action is negligible. As a resultant the average time

to log an action is about 10 seconds, which involves the time taken

by a user to double click the JAR or by a server to run the script to

open the JAR. We also took the log encryption time which is about

300 ms and is seemingly unrelated from the log size.

5.4 Log Merging Time

To check if the log harmonizer can be a bottleneck we have taken

the amount of time required to merge log files. In this article we

confirmed that each of the log files had 10 to 25 percent of the

records in common with one other. The exact number of records in

common was random for each repetition of the experiment. The

time was averaged over 10 repetitions. We tested the time to merge

up to 70 log files of 100 KB, 300 KB, 500 KB, 700 KB, 900 KB

and 1 MB each. The results are shown in Fig.3. we can see that the

time increases almost linearly to the number of files and size of

files, with the least time being acquired for merging two 100 KB

log files at 59 ms. While the time to merge 70 1 MB files was 2.35

minutes.

Fig.3. Time to create log files of different sizes.

The size of logger grows from 3500 to 4035 KB when the

size of the content items changes from 200 KB to 1 MB.

Overall because of the compression provided by JAR files,

the size of the logger is commanded by the size of the largest

files it holds. Notice that we priposely did not include large

log files. Sa as to give attention on the overhead added by

having multiple content files in a single JAR. Results are in

Fig.4.

Fig.4. Size of the logger component

6. Conclusion

We introduced modern approaches for automatically logging any

access to the data in the cloud together with an auditing

mechanism. Our approach allows the data owner to not only audit

his content but also enforce strong back end protection if needed.

Apart from that we have enclosed PDP methodology to enhance

the integrity of owners data. In future we plan to refine out

approach to verify the integrity of JRE. For that we will look into

whether it is possible to leverage the advantage of secure JVM

being development By IBM and we would like to enhance our

PDP architecture from user end which allows the users to check

data remotely in an efficient manner in multi cloud environment.

References

1. Text Books

 [1] Cloud Computing, Principles and Paradigms by John Wiley &

Sons.

 2. Conference Proceedings

 [1] Ensuring Distributed Accountability for Data Sharing in the

Cloud Author, Smitha Sundareswaran, Anna C.Squicciarini,

Member, IEEE, and Dan Lin, IEEE Transactions on Dependable

and Secure Computing ,VOL 9,NO,4 July/August 2012 .

[2] Hsio Ying Lin,Tzeng.W.G, “A Secure Erasure Code-Based

Cloud Storage System with Secure Data Forwarding “,IEEE

transactions on parallel and distributed systems,2012.

[3] Yan Zhu, Hongxin Hu, Gail Joon Ahn, Mengyang Yu,

“Coopera-tive Provable Data Possession for Integrity Verification

in Multi-Cloud Storage” , IEEE transactions on parallel and

distributed systems,2012.

3. Generic Website

 INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

 ISSN: 2320-1363

6

[1] Eucalyptus Systems, http://www.eucalyptus.com/, 2012.

[2] Emulab Network Emulation Testbed, www.emulab.net, 2012.

